
Serial Concatenated Convolutional Code Encoder in Quantum-dot Cellular Automata
Yongqiang Zhanga, Guangjun Xiea,∗, and Jie Hanb
a School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009, China

b Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada

ABSTRACT
Quantum-dot cellular automata (QCA) are a prospective nanotechnology with striking performance for complementing complementary metal oxide semiconductor

(CMOS) based integrated circuit technique. For applications in communications, serial concatenated convolutional codes (SCCCs) have been investigated due to their

negligible error floor for deep space communication. Using a combination of top-down and bottom-up approaches, we design and implement an SCCC encoder in QCA

technology. In this work, a Bose-Chaudhuri-Hocquenghem (BCH) code encoder with the ability for correcting burst errors, a pseudo random interleaver for permuting

signal bits, and a convolutional code encoder for correcting random errors are logically connected in series for composing the SCCC encoder. Specifically, inspired by

the idea for a divider design, a layout for (n, k, t) BCH code encoders is proposed and implemented with QCA cells. For using the four-phase clock mechanism, we also

devise the serial-to-parallel and parallel-to-serial converters for constructing the interleaver. In addition, (u, f, K) convolutional code encoders with various constraint

lengths are designed as well. The functionalities and validity of the proposed circuit design are verified by using QCADesigner.

Keywords: BCH codes, Convolutional codes, Serial concatenated convolutional codes, Encoder, Interleaver, Modulo-2 adder, Quantum-dot cellular automata

1. Introduction

Quantum-dot cellular automata (QCA) offer a computing para-

digm and information transmission pattern in the nanometer regime [1].

Binary information is represented by the positions of electrons in a cell

that consists of four quantum dots and two free mobile electrons. The

information is then transmitted by purely field-coupled interaction be-

tween cells [2]. By this means, there is no current flow in QCA circuits,

so that it enables systems with extremely low energy dissipation [3].

Along with ultrahigh integration and processing speed, these perfor-

mance merits make QCA a hopeful candidate for complementing com-

plementary metal oxide semiconductor (CMOS) based integrated cir-

cuits [4-6]. Additionally, to correctly control signal flow in complex

circuits, a quasi-adiabatic switching mechanism was introduced to

QCA, resulting in four cyclic clock zones, each of which is composed

of four phases (switch, hold, release and relax), respectively [7]. There-

fore, a binary string will successively transmit through cells defined in

these zones.

The design methodology for a QCA system was derived from the

automated CMOS design process [8]. Majority-based logic synthesis

techniques were put forward to reduce the number of operational com-

ponents, leading to optimized and efficient systems [9, 10]. Meanwhile,

basic arithmetic and memory circuits were realized as well [11-13].

However, the wiring in a system heavily relies on the adopted clock

scheme. Two-dimensional and Universal-Scalable-Efficient (USE)

clocks provide preferable solutions at present [14, 15]. One can use a

basic clock for any circuit to ensure the synchronization of signals ar-

riving at the same device [16]. Naturally, related evaluation criteria for

variable circuits, such as the cost and power dissipation, were proposed

∗ Corresponding author.

E-mail addresses: ahzhangyq@mail.hfut.edu.cn (Y. Zhang),
gjxie8005@hfut.edu.cn (G. Xie), jhan8@ualberta.ca (J. Han).

to select the best scheme [17, 18]. It is worth mentioning that nanomag-

net logic and molecular QCA may be more promising in physical im-

plementation because of their ambient working temperature [19, 20].

In order to achieve reliable data transmission and communication,

coding circuits are crucial. Error correcting codes typically include

block codes (BCs) and convolutional codes (CCs). Specifically, BCs

(including Hamming codes, low density parity check (LDPC) codes,

and Bose-Chaudhuri-Hocquenghem (BCH) codes) split a long message

into independent fragments and separately encode them by adding spe-

cific parity bits into each fragment. Hamming code encoders and LDPC

code decoders were already designed with QCA [21-23]. BCH codes

are one of the most important cyclic codes for correcting multiple burst

errors and widely used in fiber-optical communication and satellite

communication systems. The codeword for BCH codes is usually gen-

erated by linear feedback shift registers (LFSRs) in conventional cir-

cuits. To the best of our knowledge, BCH codes have not been studied

in QCA technology.

CCs differ from BCs in that the parity bits are not only related to

the current bits but also involving former K+1 fragments, where K+1

indicates the constraint length of the operational CC encoder. Three

schemes for rate-1/2 and constraint length-3 CC encoders were pre-

sented [24] to directly map conventional circuits to QCA with a high

cost. In addition, Turbo codes or parallel concatenated convolutional

codes (PCCCs) make it possible to approach the Shannon limit in terms

of bit error rate (BER) [25]. Turbo code encoders using parallel concat-

enated recursive CC encoders and an interleaver were also investigated

in QCA and simulated by hardware description language for QCA

(HDLQ) [26]. A component in an interleaver is a serial-to-parallel con-

verter [22, 26, 27]. Although these designs seem to be simple in QCA,

an additional special clock was applied to keep some cells in the Relax

mailto:ahzhangyq@mail.hfut.edu.cn
mailto:gjxie8005@hfut.edu.cn
mailto:jhan8@ualberta.ca

Fig. 1. QCA basics. (a) Cells. (b) Three-input majority voter. (c) Inverter.

Fig. 2. QCA clock mechanism

phase to complete signal transmission, which violets the four-phase

clock mechanism and results in complex clock wiring under the QCA

substrate layer. Furthermore, with increasing signal-noise ratio (SNR),

the BER of PCCCs may not continue to decrease, reaching the so-called

error floor. Consequently, serial concatenated convolutional codes

(SCCCs) were invented to provide superior error-free performance [28].

In some cases, SCCCs can be considered as a credible or superior re-

placement for PCCCs. One can find further theoretical basics and com-

parisons in [28]. SCCC encoders were widely used in deep space com-

munication due to their negligible error floor by employing serially

concatenated BC and CC encoders.

In this paper, we propose designs of SCCC encoders in QCA and

verify the designs by simulation. The main contributions of this work

are as follows:

 A framework for designing SCCC encoders is developed by us-

ing QCA cells for the first time.

 Using the four-phase clock mechanism in QCA, we devise a new

scalable serial-to-parallel converter and an expandable parallel-to-se-

rial converter.

 A scalable interleaver is designed with the aforementioned two

converters, which can also be used as a Last-In-First-Out (LIFO) con-

verter.

 Abandoning the LFSR structure, we propose a layout for BCH

code encoders by applying coplanar XOR gates, and then implement

encoders with various error correcting capabilities in QCA.

 The CC encoders with various constraint lengths are designed

with XOR gates.

 The functionalities and validity of presented circuits are demon-

strated with QCADesigner.

 The QCA costs for BCH code and CC encoders are calculated

and summarized.

This paper proceeds as follows: the background for QCA, includ-

ing basic devices and clock mechanism, is briefly reviewed in Section

2. Section 3 presents the rationale of SCCC encoders in detail. Each

component and the full circuit of an SCCC encoder are then designed

in QCA in Section 4. Simulation results are presented in Section 5. Fi-

nally, Section 6 concludes this paper.

2. QCA background

The primitive in QCA is a cell that can be viewed as a charge

container with four quantum dots and two free mobile electrons [29].

These electrons can quantum mechanically tunnel between the dots in-

side one cell. The Coulomb interaction between two electrons tends to

localize them in a diagonal pattern, leading to two configurations for a

cell to encode binary information, either logic “1” or “0” as shown in

Fig. 1(a), respectively. A typical semiconductor cell is defined with a

width of 18nm in QCADesigner and employed as a prototype in circuit

design and simulation [16]. As illustrated in Fig. 1(b), the three-input

majority voter (MV3) is a distinctive logic element in QCA [30]. The

Boolean function for an MV3 with inputs A, B, and C and output F is

F=MV3(A, B, C)=AB+AC+BC, which tends to express the majority of

three inputs. By fixing one input in binary 0 or 1, a two-input AND or

OR gate will be realized. With a diagonal configuration of two cells, an

inverter for producing the inverse of an input signal is then realized, as

shown in Fig. 1(c).

The clock in QCA is performed by an electric field, which plays

two crucial roles including supplying energy for cells and controlling

data flow in circuits [3, 7]. The quasi-adiabatic clock mechanism with

four zones was introduced to ensure a circuit remaining in instantane-

ous ground state. As shown in Fig. 2, each clock is composed of four

cyclical phases: switch, hold, release, and relax. Taking the clock0 as

an example, the inter-dot barrier will gradually increase during the

switch phase from t=0 to t=π/2 and then peaks in the hold phase, result-

ing in confining the electrons in quantum dots. Thus, this configuration

can encode binary 0 or 1 and polarize neighboring cells in clock1. After

the hold phase of clock0, the barrier continues to decrease during the

release phase, so that the tunneling probability of electrons accordingly

increases. Meanwhile, the cells in clock1 are in the hold phase. When

the inter-dot barrier reaches the minimum value, the cells in clock0

completely lose their polarizations and do not have any influence on

neighboring cells while getting ready for next cycle at t=2π. The signals

propagated from clock0 to clock3 experience one clock cycle. Besides,

the phase difference between two adjacent input bits is exactly one

clock cycle as well in QCADesigner [16].

Fig. 3. An SCCC encoder. (a) Overall diagram. (b) Parity bit generator diagram of outer (7, 4, 1) BCH code encoder and modulo-2 adder diagram. (c) Pseudo random interleaver model. (d)

Inner (2, 1, 2) CC encoder diagram and state transition model.

3. Design principles of SCCCs

3.1. Overall circuit structure

An SCCC encoder serially consists of an outer encoder (OE), a

pseudo random interleaver (PRI) and an inner encoder (IE) whose input

is a permuted codeword of the OE by the PRI [28]. The overall diagram

for an SCCC encoder is shown in Fig. 3(a), of which the OE can be a

CC or BC encoder, while the IE may as well use a CC encoder. The

coding process is as follows: an original message string A is sent to an

OE and coded as a systematic codeword C by adding parity bits into

the message A; the codeword C is then fed into and permuted by a PRI

to a bit string I; finally, the string I is coded by a CC encoder as code-

words Y0 and Y1. We employ a BCH code encoder for the OE and a CC

encoder for the IE in this paper, respectively.

3.2. Outer encoder

BCH codes are one type of the cyclic codes for correcting multi-

ple burst errors, which are described by the Galois fields (GFs) and

generator polynomials [31, 32]. Taking an example in GF(23), the prim-

itive polynomial is 𝑝𝑝(𝑥𝑥) = 𝑥𝑥3 + 𝑥𝑥 + 1; the primitive element is α; we

have 𝛼𝛼3 + 𝛼𝛼 + 1 = 0, that is 𝛼𝛼3 = 𝛼𝛼 + 1. One will access 𝛼𝛼4 = 𝛼𝛼 ∙

𝛼𝛼3 = 𝛼𝛼2 + 𝛼𝛼, 𝛼𝛼5 = 𝛼𝛼2 + 𝛼𝛼 + 1, 𝛼𝛼6 = 𝛼𝛼2 + 1, and 𝛼𝛼7 = 𝛼𝛼 ∙ 𝛼𝛼6 = 1.

As a result, there are eight elements {0,1,𝛼𝛼,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4,𝛼𝛼5,𝛼𝛼6, } in

GF(23). For a (7, 4, 1) BCH code encoder with ECC t = 1, the generator

polynomial is 𝑔𝑔(𝑥𝑥) = 𝑚𝑚1(𝑥𝑥), and the conjugate root class of 𝑚𝑚1(𝑥𝑥)

is {𝛼𝛼,𝛼𝛼2,𝛼𝛼4}. Therefore, the code generator polynomial is 𝑔𝑔(𝑥𝑥) =

(𝑥𝑥 − 𝛼𝛼)(𝑥𝑥 − 𝛼𝛼2)(𝑥𝑥 − 𝛼𝛼4) = 𝑥𝑥3 + 𝑥𝑥 + 1 . The message polynomial

and parity polynomial for a message string (A3, A2, A1, A0) are 𝐴𝐴(𝑥𝑥) =

𝐴𝐴3𝑥𝑥3 + 𝐴𝐴2𝑥𝑥2 + 𝐴𝐴1𝑥𝑥 + 𝐴𝐴0 and 𝑅𝑅(x) = 𝑅𝑅2𝑥𝑥2+𝑅𝑅1𝑥𝑥 + 𝑅𝑅0 =

[𝐴𝐴(𝑥𝑥)𝑥𝑥3]𝑚𝑚𝑚𝑚𝑚𝑚[𝑔𝑔(𝑥𝑥)], respectively. By adding this parity polynomial

into the message polynomial 𝐴𝐴(𝑥𝑥), the codeword 𝐶𝐶(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)𝑥𝑥3 +

[𝐴𝐴(𝑥𝑥)𝑥𝑥3]𝑚𝑚𝑚𝑚𝑚𝑚[𝑥𝑥3 + 𝑥𝑥 + 1] is achieved.

Fig. 3(b) depicts the proposed layout for the parity bit generator

of a (7, 4, 1) BCH code encoder, in which each square with a symbol

⊕ is a modulo-2 adder (realized by an XOR gate) as shown in the inset

surrounded by a rectangle. This generator utilizes the idea for a divider

design, where three 0s in the dividend (A3, A2, A1, A0, 0, 0, 0) are gen-

erated by shifting (A3, A2, A1, A0) to left by three bits and the divisor is

the coefficients (g3, g2, g1, g0) of the code generator polynomial. In each

computing stage, no matter what the most significant bit of the dividend

is, latter three bits are of interest. The calculated remainder is then

shifted by one bit to right. Further, because the coefficients of the code

generator polynomial are constant, all AND gates can be deleted. For

example, in the first stage, g2 = 0, the output of a AND gate is certainly

0, so the output of a modulo-2 adder is equal to A2; similarly, for g1 =

1, the output of a AND gate becomes A3, so the output of an adder de-

pends on the XOR operation on A3 and A1. The full circuit for a (7, 4,

1) BCH code encoder needs a serial-to-parallel converter for generating

parallel bits from a message string and a parallel-to-serial converter for

connecting parity bits and the message. Regarding the modulo-2 adder

or XOR gate, although it was comprehensively studied, complex cross-

overs or other logic gates are used in previous designs [33-36]. With a

NAND-NOR-Inverter (NNI) gate and a five-input majority voter (MV5)

in [37, 38], a coplanar layout for the XOR gate is proposed. This layout

with fewer logic gates not only removes crossovers but also reduces

power dissipation compared with its counterparts.

Fig. 4. A modulo-2 adder in QCA.

Fig. 5. A 4-bit serial-to-parallel converter in QCA.

Fig. 6. A 4-bit parallel-to-serial converter in QCA.

3.3. Interleaver

An interleaver is a data mixer to disorganize input signal bits [28,

39]. Fig. 3(c) illustrates a model for a 7-bit PRI. A bit string 𝐶𝐶 =

(𝐶𝐶6,𝐶𝐶5,𝐶𝐶4,𝐶𝐶3,𝐶𝐶2,𝐶𝐶1,𝐶𝐶0) should be parallelized into separate bits

C6C5…C0, where C6 and C0 are the most and least significant bits, re-

spectively. The parallelized bits are then swapped by using this pattern

that turns the order of these bits upside down in this paper. A parallel-

to-serial converter serializes the permuted bits into a bit string I in the

end. Hence, the design for serial-to-parallel converter and parallel-to-

serial converter (abbreviated as SPC and PSC) is the core in obtaining

the PRI. A side note is that this interleaver can be extended and used as

a Last-In-First-Out (LIFO) converter.

3.4. Inner encoder

A (u, f, K) CC encoder is utilized as the IE, where u, f and K+1

signify the output count, input count and constraint length of the en-

coder, respectively. The code rate is f/u, which means that an f-bit mes-

sage string is encoded as a u-bit codeword. The description methods

that correspond to different decoding algorithms include a generator

polynomial matrix, the state diagram and trellis diagram for CC encod-

ers [40]. Fig. 3(d) displays the coding circuit and state transfer diagram

for a (2, 1, 2) CC encoder, which frequently appears in many CC de-

signs. In this circuit, D1 and D2 are the states of two 1-bit shift registers.

These registers can be implemented by a wire with four serial clock

zones in QCA. Each square with a symbol ⊕ is a modulo-2 adder pro-

posed in the last subsection. The generator polynomial matrix of this

encoder is 𝑌𝑌 = [𝑌𝑌0,𝑌𝑌1] = [𝐼𝐼 + 𝐷𝐷1 + 𝐷𝐷2, 𝐼𝐼 + 𝐷𝐷2], where the symbol +

denotes modulo-2 addition [41]. In this matrix, the first element indi-

cates that the codeword Y0 relates to input bits I, It-1 and It-2 and the

second means that the codeword Y1 involves input bits I and It-2. With

regard to the state diagram, two binary bits in circles are the states of

two shift registers; dashed or solid arrow lines indicate input bit 0 or 1;

the values near arrow lines are two codewords Y0 and Y1, respectively.

The diagram provides the state transition process, codewords and states

of shift registers for each input bit.

4. Design and implementation of an SCCC encoder in QCA

In this section, we will present the proposed circuit design in

QCA technology. The components are illustrated and logically con-

nected for producing an SCCC encoder.

4.1. Modulo-2 adder

To get a coplanar structure of modulo-2 adders, the NNI and MV5

gates are used as shown in Fig. 4. The logic function for a NNI gate

with inputs a, b and c is 𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎,𝑏𝑏, 𝑐𝑐) = 𝑎𝑎�𝑏𝑏� + 𝑎𝑎�𝑐𝑐 + 𝑏𝑏�𝑐𝑐, which realizes

NOT operation in pins a and b. We obtain the logic function of XOR

𝑎𝑎 ⊕ 𝑏𝑏 = 𝑀𝑀𝑀𝑀5(𝑎𝑎,𝑏𝑏,𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 1),𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 1), 0) . This implementa-

tion has 34 cells, occupies 0.0288μm2 and 0.75 clock cycles. The prin-

ciples that two-cell spacing and at least two cells in each clock zone are

established to avoid sneak noise between wires and keep cells stable.

Note that the input and output pins are not surrounded by other cells,

leading to being non-essential to consider crossovers. Additionally, var-

ious-bit parity checkers can easily be constructed by hierarchically con-

necting XOR gates.

4.2. Serial-to-parallel and parallel-to-serial converters

Previous works on SPC and PSC are based on an additional spe-

cial clock to control data flow. Four pins of the SPC designed in [22]

will generate the same bit strings and two adjacent strings are shifted

by one clock cycle if the special clock is missing. Moreover, the phase

difference between two neighboring input bits is one clock cycle, which

provides clues to construct an SPC and PSC. We define a filtration con-

trol matrix (FCM) as a unitary matrix whose dimension is equal to the

length of the input bit string to be parallelized. Fig. 5 shows a 4-bit SPC

in QCA, of which the FCM is a four-dimensional unitary matrix as

equation(1).

0

1

2

3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

F
F

FCM
F
F

   
   
   = =
   
   

  

. (1)

Fig. 7. Full circuit of an SCCC encoder in QCA.

The string 𝐶𝐶 = (𝐶𝐶3,𝐶𝐶2,𝐶𝐶1,𝐶𝐶0) accompanies the FCM as inputs,

where 𝐶𝐶3 and 𝐶𝐶0 are the most and least significant bits, respectively.

We first input C0, and then C1, C2, and C3 in turn in QCADesigner. Input

bits C3 and F3 arrive at the leftmost AND gate when C0 and F0 reach

the rightmost AND gate, so that the parallelized outcomes keep syn-

chronous. With the 0s in each row of the FCM and AND gates, the

undesired output bits will be masked. In addition, the crossovers using

clock1 and clock3 are implemented for a coplanar layout, where six

cells in clock1 are used for avoiding interference while strengthening

the signals.

Fig. 6 displays a 4-bit PSC for serializing four separate bits

𝐶𝐶0,𝐶𝐶1,𝐶𝐶2 and 𝐶𝐶3 into a bit string 𝐶𝐶 = (𝐶𝐶3,𝐶𝐶2,𝐶𝐶1,𝐶𝐶0), where 𝐶𝐶3 and

𝐶𝐶0 are the most and least significant bits, respectively. Although four

bits are simultaneously fed into this converter, bit 𝐶𝐶3 gets to output pin

C first because the delay of two neighboring transmission lines is one

clock cycle. OR gates play the role in making a selection between input

bits and undesired signals. This layout can readily be changed for firstly

generating bit 𝐶𝐶0 by accordingly adjusting the clock delay of wires.

4.3. Full circuit of an SCCC encoder

In this subsection, an SCCC encoder consisting of an OE, a PRI

and an IE will be implemented with QCA cells. Fig. 7 shows the full

circuit of an SCCC encoder, in which three main components are sur-

rounded by black rectangles and marked with text. A (7, 4, 1) BCH code

encoder is applied to the OE. There are four steps for depicting its work

process. First, a 4-bit message string 𝐴𝐴 = (𝐴𝐴3,𝐴𝐴2,𝐴𝐴1,𝐴𝐴0) to be en-

coded is parallelized into four isolated bits by using a 4-bit SPC, where

input [𝐹𝐹0;𝐹𝐹1;𝐹𝐹2;𝐹𝐹3] is a four-dimensional unitary matrix. Next, four

parallelized bits are fed into a parity bit generator. This generator has

four computing stages, of which each stage consumes one clock delay.

In the parity bit generator, each computing stage uses 3 modulo-2 ad-

ders, while its implementation utilizes five adders in total because of

the materialized coefficients of generator polynomial and three 0s gen-

erated by shifting input string to left by three bits. Then, a 3-bit PSC is

connected to the endpoint of this generator for serializing the computed

remainder 𝑅𝑅2,𝑅𝑅1,𝑅𝑅0 into a bit string R. Finally, an OR gate, which we

called a connector and marked with pink, is employed to connect the

string R and the message A for making up a systematic codeword C that

will be put into the PRI next.

For a PRI, a 7-bit SPC and a 7-bit PSC are serially connected,

where [𝐻𝐻0;𝐻𝐻1;𝐻𝐻2;𝐻𝐻3;𝐻𝐻4;𝐻𝐻5;𝐻𝐻6] is a seven-dimensional FCM for

filtering unfavorable data. The serpentine lines are just used to make

signals synchronous. The bit string C is parallelized, then permuted,

and serialized in the end, generating a disorganized bit string I. The data

exchange model is already mentioned and completed by employing the

7-bit PSC. Hence, the PSC serves for two purposes including serializ-

ing the parallelized bits and turning these bits upside down. One can

conveniently realize other models by interchanging the clock delay of

output wires of the PSC. Taking the swapping of C3 and C2 in string I

as an example, extending four clock cycles to five for C3 and shortening

five clock cycles to four for C2 will effectively achieve this function.

We employ a (2, 1, 2) CC encoder in QCA to explain the principle

of IEs. The input string of this encoder is the string I and two codewords

are Y0 and Y1. As we can see from its generator polynomial matrix 𝑌𝑌 =

[𝑌𝑌0,𝑌𝑌1] = [𝐼𝐼 + 𝐷𝐷1 + 𝐷𝐷2, 𝐼𝐼 + 𝐷𝐷2], two elements have a factor 𝐼𝐼 + 𝐷𝐷2,

which is also used to create the codeword 𝑌𝑌1. That is to say, one can

realize 𝑌𝑌1 first and 𝑌𝑌0 will be produced next. It is worth noting that

only in this way can this encoder be constructed with two modulo-2

adders. This encoder holds two clock cycles at most and gets a superior

optimization compared with counterparts in [24].

Fig. 8. Functional simulation results for a modulo-2 adder.

Fig. 9. Functional simulation results for a serial-to-parallel converter.

Fig. 10. Functional simulation results for a parallel-to-serial converter.

Fig. 11. Functional simulation results for an SCCC encoder.

5. Results

This section presents the simulation and analysis results for the

circuit design proposed in the last section. The waveforms produced by

utilizing the bistable approximation simulation engine in QCADesigner

verify the validity of these circuits, while performance figures account

for their physical properties. The testing samples and their results are

presented in detail. The QCA costs for various BCH code and CC en-

coders are also derived.

5.1. Modulo-2 adder

We first present the simulation results for the modulo-2 adder or

XOR gate, as shown in Fig. 8. Two input vectors and output vector are

labelled and marked with the text. It is easy to test its correctness with

this figure. Here, setup time means that adequate 0s are put into the

circuit to set all cells in state 0 for the test examples.

Table 1

Performance figures of the designed circuits.

Circuits
Area

(μm2)

Delay

(clocks)
Cell Crossover

Modulo-2 adder 0.0288 0.75 34 0

4-bit SPC 0.3192 3.50 184 3

4-bit PSC 0.1248 1.00 98 0

SCCC encoder 5.4320 19.00 2300 18 (10/8)

Table 2

Performance figures of various modulo-2 adders.

Modulo-2 adders
Area

(μm2)

Delay

(clocks)
Cell Crossover

[33] 0.0528 1.00 45 0

[34] 0.0396 0.75 48 0

[35] 0.0216 0.75 28 0

[36] 0.0252 1.00 32 0

Proposed 0.0196 0.75 27 0

Table 3

Performance figures of various BCH coder encoders.

Encoders
Area

(μm2)

Delay

(clocks)
Cell XOR MV3 Crossover

(7,4,1) 1.7936 9.00 747 5 7 12 (4/8)

(15,11,1) 9.2192 23.25 2922 18 15 44 (11/33)

(15,7,2) 5.8604 16.25 2790 20 15 56 (7/49)

(15,5,3) 6.1308 12.75 2742 20 15 50 (5/45)

(31,26,1) 46.8488 53.50 11730 47 31 130 (26/104)

(31,21,2) 35.0520 44.75 12449 116 31 210 (21/189)

(31,16,3) 31.5732 36.00 13604 145 31 240 (16/224)

Table 4

Performance figures of various CC encoders

Encoders
Area

(μm2)

Delay

(clocks)
Cell XOR MV3 Crossover

(2,1,2) I in [24] 0.3400 6.50 228 0 12 0

(2,1,2) II in [24] 0.7100 4.00 378 0 8 0

(2,1,2) III in [24] 0.3400 3.50 239 0 6 0

(2,1,2) 0.1104 2.00 114 2 0 0

(2,1,4) 0.4800 3.00 273 4 0 0

(2,1,6) 0.5376 4.00 373 5 0 0

(2,1,8) 0.9648 4.00 552 7 0 0

Fig. 12. QCA cost for BCH code encoders.

Fig. 13. QCA cost for convolutional code encoders.

5.2. Serial-to-parallel and parallel-to-serial converters

We then show the results (Fig. 9 and Fig. 10) for the 4-bit SPC

and 4-bit PSC, respectively. A serial input C = (C3, C2, C1, C0) = (1, 1,

0, 1) is used to test the function of the SPC to parallelize the input into

four parallel bits surrounded by a red rectangle. The order of four bits

in the input string in simulation waveform is reversed from its written

form because we first feed C0 and then C1, C2 and C3 into the circuit in

QCADesigner. The parallel four bits 1, 1, 0, 1 are also serialized for

testing the PSC. The serialized output vector is marked as well and the

signal bit C3 is exported first. The delay counted from the first input bit

to output for the SPC is 3.5 clock cycles, while it is 1.0 cycle for the

PSC. Setup time in these figures has same meaning as mentioned before.

5.3. Full circuit of an SCCC encoder

For the SCCC encoder, several test points in the full circuit are

chosen to verify its functionalities by successive steps as follows (Fig.

11). By using a 4-bit SPC, a message string A = (A3, A2, A1, A0) = (1, 1,

0, 1) to be encoded in the OE is first parallelized into four separate bits,

which are then passed onto a parity bit generator. The order of input

bits is opposite to its expression as described before. A (7, 4, 1) BCH

code encoder generates three parity bits 0, 0, 1, which ought to follow

the original message string for making up a systematic codeword.

Therefore, a 3-bit PSC is utilized for serializing the parity bits into a

string R = (R2, R1, R0) = (0, 0, 1) (in a reversed order as in the figure).

After that, a connector plays the role in linking the message string and

string R into C = (A3, A2, A1, A0, R2, R1, R0) = (1, 1, 0, 1, 0, 0, 1) (in a

reversed order as in the figure) that is the codeword of the outer (7, 4,

1) BCH code encoder. The second stage is that the codeword of the OE

is poured into a PRI for generating a permuted codeword I = (A3, A2, A1,

A0, R2, R1, R0) = (1, 1, 0, 1, 0, 0, 1) (in the same order as in the figure).

Again, the function of the PRI is turning the order of the codeword of

the OE upside down. Finally, the inner codeword (Y0Y1) = (11, 01, 01,

00, 10, 11, 11) is produced by the (2, 1, 2) CC encoder, as labelled with

the text.

We begin to quantify the performance figures of the designed cir-

cuits to evaluate their physical properties. Table 1 lists several figures

including the area, delay, cell count and crossover count of the circuits

presented in section IV. For the modulo-2 adder, aforementioned prin-

ciples are carried out to avoid interference between wires, whereas pre-

vious designs do not comply with those rules. It enables us to simplify

the adder design.

Table 2 displays the physical features of the renewed XOR gate

and its counterparts. The results show that the proposed design is more

efficient than others in the considered figures. For the two converters,

these values will gradually increase with the bit number. More specifi-

cally, the area, delay and number of cells for an n-bit SPC are

(144𝑛𝑛2 + 264𝑛𝑛 − 168) × 10−4 μm2, (2n – 1)/2 clock cycles and

4𝑛𝑛2 + 34𝑛𝑛 − 16 , while they are (84𝑛𝑛2 − 24𝑛𝑛) × 10−4 μm2, n/4

clock cycles and 5𝑛𝑛2 + 6𝑛𝑛 − 6 for an n-bit PSC, respectively. In ad-

dition, the number of coplanar crossovers for an n-bit SPC is n – 1. The

SCCC encoder gets large values in these terms because it is composed

of the above components. The crossover count for the SCCC encoder

is 18 including 10 coplanar crossings and 8 multi-layer structures.

Table 3 summarizes the performance figures of different BCH

code encoders. The area and cell count for BCH code encoders with

various ECCs roughly show irregular fluctuation. The delay of (n, k, t)

encoders decreases with increasing ECC. To be exact, the delay of an

(n, k, t) BCH code encoder is k + k + (n – k + 1)/4, where the first k is

the delay of a k-bit SPC; the second indicates the delay of a parity bit

generator and the third term means the total delay of a (n – k)-bit PSC

and a connector. Similarly, the number of XOR gates relates to the

structure of an encoder and the supplementary 0s generated by shifting

the message string. The XOR count in a (n, k, t) BCH code encoder is

gk – n, where g is the number of nonzero coefficients of its generator

polynomial. Here, both SPC and PSC consist of MV3s, whose count is

equal to n in total. The last column represents the number of utilized

crossovers, where the values in parentheses are the number of coplanar

and multi-layer crossovers, whose counts are k and k(n – k – 1), respec-

tively.

The case for the IEs is simpler because they consist of modulo-2

adders without crossovers in Table 4. Their performance figures grad-

ually increase with their constraint length. The expressions for these

figures of a (u, f, K) CC encoder depend on its concrete conditions, such

as the generator polynomial matrix. The last three rows show the per-

formance of three (2, 1, 2) CC encoders in [24]. These designs mainly

depend on OR and AND gates, which obviously reduced their perfor-

mance. With the proposed method, the designed CC encoders do not

only get superior optimization in circuit area, delay and cell count, but

also consume fewer modulo-2 adders that consist of NNI and MV5 gates.

Besides the above considered criteria, the concept of QCA cost

was used to evaluate the quality of a system [17]. The cell count of a

QCA circuit is generally proportional to its area, while the area mainly

relates to the utilized crossover types. Moreover, both logic gates and

wires are implemented by using QCA cells. The cost takes these aspects

into consideration and is given by Cost = (𝑀𝑀𝑥𝑥 + 𝐼𝐼 + 𝐶𝐶𝑦𝑦) × 𝐿𝐿𝑧𝑧, where

M, I, C and L are respectively the number of majority gates, inverters,

crossovers and latency; x, y, and z are the exponential weights for these

parameters. We extend this equation by taking it into account the NNI

and MV5 gates because both of them realize simple logical functions as

the MV3. Additionally, a multilayer crossing consumes more cost than

a coplanar crossover; for instance, 𝐶𝐶𝑚𝑚 = 3𝐶𝐶𝑐𝑐, where 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑐𝑐 are

the costs of a three-layer crossover and a coplanar crossover,

respectively. Fig. 12 and Fig. 13 show the calculated QCA costs for two

types of encoders. We can see that the cost of BCH code encoders

shows great diversity in GF(2m) with increasing ECC, which is jointly

resulted from the decreasing delay and increasing number of crossovers.

Varying changes in their values induce the irregular fluctuation. With

the increase of constraint length of (2, 1, K) encoders without

crossovers, it is evident that the number of logic components and delay

progressively accrues. Therefore, the gradually increasing cost of CC

encoders appears with incremental constraint length. In addition, the

proposed (2,1,2) CC encoder gets a significant optimization compared

with the three schemes in [24] in respect of QCA cost.

6. Conclusions

This paper proposes a layout for serial concatenated convolu-

tional code (SCCC) encoders in quantum-dot cellular automata (QCA)

technology. An SCCC encoder is made up of a Bose-Chaudhuri-

Hocquenghem (BCH) code encoder, a pseudo random interleaver and

a convolutional code encoder. We employ a (7, 4, 1) BCH code encoder

as the outer encoder and a (2, 1, 2) convolutional code encoder as inner

encoder to illustrate the design method of SCCC encoders. To be spe-

cific, a scheme for BCH code encoders is proposed and the encoders

with various error correction capacities are implemented in QCA. The

convolutional code encoders with various constraint lengths are inves-

tigated as well. For data swapping, we design a pseudo-random inter-

leaver, which consists of a serial-to-parallel converter and a parallel-to-

serial converter. It is worth noticing that these converters are imple-

mented by using the four-phase clock mechanism in QCA. The simula-

tion waveforms and performance figures verified their functionalities,

credibility and physical properties. The QCA cost of BCH code encod-

ers presents great diversity with increasing error correcting capability,

while the cost of convolutional code encoders will increase with incre-

mental constraint length. The circuit design of three components of

SCCC encoder in this paper are rudimentary. Future work will be con-

sidered to design more efficient practical components for communica-

tion applications, i.e. universal or serial BCH encoders and block inter-

leaver.

Acknowledgement

This work is supported by the National Natural Science Founda-

tion of China (No. 61271122).

References

[1] P.D. Tougaw, C.S. Lent, Logical devices implemented using quantum cellular

automata, J. Appl. Phys. 75(3) (1994) 1818-1825.

[2] F. Karim, K. Walus, Efficient simulation of correlated dynamics in quantum-dot

cellular automata (QCA), IEEE Trans. Nanotechnol. 13(2) (2014) 294-307.

[3] J. Timler, C.S. Lent, Power gain and dissipation in quantum-dot cellular automata, J.

Appl. Phys. 91(2) (2002) 823-831.

[4] L. Livadaru, P. Xue, Z. Shaterzadeh-Yazdi, G.A. DiLabio, J. Mutus, J.L. Pitters, B.C.

Sanders, R.A. Wolkow, Dangling-bond charge qubit on a silicon surface, New J. Phys.

12 (2010) 1-15.

[5] H. Kawai, F. Ample, Q. Wang, Y.K. Yeo, M. Saeys, C. Joachim, Dangling-bond logic

gates on a Si(100)-(2 x 1)-H surface, J. Phys.-Condes. Matter 24(9) (2012) 1-13.

[6] R. Wang, A. Pulimeno, M.R. Roch, G. Turvani, G. Piccinini, M. Graziano, Effect of a

clock system on bis-ferrocene molecular QCA, IEEE Trans. Nanotechnol. 15(4) (2016)

574-582.

[7] C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots, Proc.

IEEE 85(4) (1997) 541-557.

[8] S.C. Henderson, E.W. Johnson, J.R. Janulis, P.D. Tougaw, Incorporating standard

CMOS design process methodologies into the QCA logic design process, IEEE Trans.

Nanotechnol. 3(1) (2004) 2-9.

[9] P. Wang, M.Y. Niamat, S.R. Vemuru, M. Alam, T. Killian, Synthesis of

majority/minority logic networks, IEEE Trans. Nanotechnol. 14(3) (2015) 473-483.

[10] K. Kong, Y. Shang, R. Lu, An optimized majority logic synthesis methodology for

quantum-dot cellular automata, IEEE Trans. Nanotechnol. 9(2) (2010) 170-183.

[11] D. Abedi, G. Jaberipur, Decimal full adders specially designed for quantum-dot

cellular automata, IEEE Trans. Circuits Syst. II Express Briefs 65(1) (2018) 106-110.

[12] G. Turvani, M. Bollo, M. Vacca, F. Cairo, M. Zamboni, M. Graziano, Design of mram-

based magnetic logic circuits, IEEE Trans. Nanotechnol. 16(5) (2017) 851-859.

[13] M. Kianpour, R. Sabbaghi-Nadooshan, A novel quantum-dot cellular automata X-bit

× 32-bit SRAM, IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(3) (2016) 827-

836.

[14] V. Vankamamidi, M. Ottavi, F. Lombardi, Two-dimensional schemes for

clocking/timing of QCA circuits, IEEE Trans. Comput. Aided Des. Integr. Circuits

Syst. 27(1) (2008) 34-44.

[15] C.A.T. Campos, A.L. Marciano, O.P.V. Neto, F.S. Torres, USE: A universal, scalable,

and efficient clocking scheme for QCA, IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 35(3) (2016) 513-517.

[16] K. Walus, T.J. Dysart, G.A. Jullien, R.A. Budiman, QCADesigner: A rapid design and

simulation tool for quantum-dot cellular automata, IEEE Trans. Nanotechnol. 3(1)

(2004) 26-31.

[17] W. Liu, L. Lu, M. Oneill, E.E. Swartzlander, A first step toward cost functions for

quantum-dot cellular automata designs, IEEE Trans. Nanotechnol. 13(3) (2014) 476-

487.

[18] S. Srivastava, S. Sarkar, S. Bhanja, Estimation of upper bound of power dissipation in

QCA circuits, IEEE Trans. Nanotechnol. 8(1) (2009) 116-127.

[19] F. Riente, G. Turvani, M. Vacca, M.R. Roch, M. Zamboni, M. Graziano, ToPoliNano:

A CAD tool for nano magnetic logic, IEEE Trans. Comput. Aided Des. Integr. Circuits

Syst. 36(7) (2017) 1061-1074.

[20] A. Pulimeno, M. Graziano, A. Sanginario, V. Cauda, D. Demarchi, G. Piccinini, Bis-

ferrocene molecular QCA wire: Ab initio simulations of fabrication driven fault

tolerance, IEEE Trans. Nanotechnol. 12(4) (2013) 498-507.

[21] G. Xie, Y. Xiang, Y. Zhang, S. Liu, H. Lv, Design and implementation of encoding

and check code circuit with hamming code on QCA, Int. J. Unconv. Comput. 10(5-6)

(2014) 391-404.

[22] D.S. Silva, L.H.B. Sardinha, M.A.M. Vieira, L.F.M. Vieira, O.P.V. Neto, Robust serial

nanocommunication with QCA, IEEE Trans. Nanotechnol. 14(3) (2015) 464-472.

[23] M. Awais, M. Vacca, M. Graziano, M.R. Roch, G. Masera, Quantum dot cellular

automata check node implementation for LDPC decoders, IEEE Trans. Nanotechnol.

12(3) (2013) 368-377.

[24] M. Zhang, L. Cai, X. Yang, H. Cui, Z. Wang, Implementation of convolutional encoder

in quantum-dot cellular automata, Key Eng. Mater. 645-646 (2015) 1078-1084.

[25] C. Berrou, A. Glavieux, P. Thitimajshima, Near shannon limit error-correcting coding

and decoding: Turbo-codes (1), Proceedings of ICC '93 - IEEE International

Conference on Communications, 1993, pp. 1064-1070.

[26] M. Zhang, L. Cai, X. Yang, H. Cui, C. Feng, Design and simulation of turbo encoder

in quantum-dot cellular automata, IEEE Trans. Nanotechnol. 14(5) (2015) 820-828.

[27] C.R. Graunke, D.I. Wheeler, D. Tougaw, J.D. Will, Implementation of a crossbar

network using quantum-dot cellular automata, IEEE Trans. Nanotechnol. 4(4) (2005)

435-440.

[28] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, Serial concatenation of interleaved

codes: Performance analysis, design, and iterative decoding, IEEE Trans. Inf. Theory

44(3) (1998) 909-926.

[29] M. Taucer, F. Karim, K. Walus, R.A. Wolkow, Consequences of many-cell correlations

in clocked quantum-dot cellular automata, IEEE Trans. Nanotechnol. 14(4) (2015)

638-647.

[30] M. Momenzadeh, J. Huang, M.B. Tahoori, F. Lombardi, Characterization, test, and

logic synthesis of And-Or-Inverter (AOI) gate design for QCA implementation, IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12) (2005) 1881-1892.

[31] J. Cho, W. Sung, Efficient software-based encoding and decoding of BCH codes, IEEE

Trans. Comput. 58(7) (2009) 878-889.

[32] R.F.T. El-Din, R.M. El-Hassani, S.H. El-Ramly, A novel high-speed systematic

encoder for long binary cyclic codes, IEEE Commun. Lett. 17(5) (2013) 984-987.

[33] M. Poorhosseini, A.R. Hejazi, A fault-tolerant and efficient XOR structure for modular

design of complex QCA circuits, J. Circuits Syst. Comput. 27(7) (2017) 1-24.

[34] M. Rahimpour Gadim, N. Jafari Navimipour, A new three-level fault tolerance

arithmetic and logic unit based on quantum dot cellular automata, Microsyst. Technol.

24(2) (2017) 1-11.

[35] G. Singh, R.K. Sarin, B. Raj, A novel robust Exclusive-OR function implementation

in QCA nanotechnology with energy dissipation analysis, J. Comput. Electron. 15(2)

(2016) 455-465.

[36] S. Sheikhfaal, S. Angizi, S. Sarmadi, M.H. Moaiyeri, S. Sayedsalehi, Designing

efficient QCA logical circuits with power dissipation analysis, Microelectron. J. 46(6)

(2015) 462-471.

[37] K. Navi, R. Farazkish, S. Sayedsalehi, M. Rahimi Azghadi, A new quantum-dot

cellular automata full-adder, Microelectron. J. 41(12) (2010) 820-826.

[38] B. Sen, B. Sikdar, Characterization of universal NAND-NOR-inverter QCA gate,

Proceedings of 11th IEEE VLSI Design and Test Symposium, Kolkata, 2007, pp. 433-

442.

[39] Y. Jungpil, M.L. Boucheret, R. Vallet, A. Duverdier, G. Mesnager, Interleaver design

for serial concatenated convolutional codes, IEEE Commun. Lett. 8(8) (2004) 523-

525.

[40] Q.T.Z. Keith, Channel coding, in: Q.T.Z. Keith (Ed.), Wireless communications:

Principles, theory and methodology, John Wiley & Sons, England, 2015, pp. 121-170.

[41] S. Moriya, K. Kikuchi, H. Sasano, Efficient search for high-rate punctured

convolutional codes using dual codes, IEICE Trans. Fundam. Electron. Commun.

Comput. Sci. E99-A(12) (2016) 2162-2169.

	Serial Concatenated Convolutional Code Encoder in Quantum-dot Cellular Automata
	1. Introduction
	2. QCA background
	3. Design principles of SCCCs
	3.1. Overall circuit structure
	3.2. Outer encoder
	3.3. Interleaver
	3.4. Inner encoder

	4. Design and implementation of an SCCC encoder in QCA
	4.1. Modulo-2 adder
	4.2. Serial-to-parallel and parallel-to-serial converters
	4.3. Full circuit of an SCCC encoder

	5. Results
	5.1. Modulo-2 adder
	5.2. Serial-to-parallel and parallel-to-serial converters
	5.3. Full circuit of an SCCC encoder

	6. Conclusions

